Julia-Colonna asymmetric epoxidation of furyl styryl ketone as a route to intermediates to naturally-occurring styryl lactones

Wei-ping Chen and Stanley M. Roberts

Department of Chemistry, Liverpool University, Liverpool, UK L69 7ZD
Received (in Cambridge) 30th October 1998, Accepted 23rd November 1998

The enone 1 was oxidized stereoselectively using ureahydrogen peroxide with polyleucine as the catalyst to give the epoxide 2 which was used to make (+)-goniotriol 7, $(+)$-goniofufurone 8, (+)-8-acetylgoniotriol 9 and goniopypyrone 10.

Introduction and background information

The asymmetric epoxidation of α, β-unsaturated ketones using chiral phase-transfer catalysts, ${ }^{1}$ chiral organometallic catalysts ${ }^{2}$ and selected polyamino acids ${ }^{3}$ has received much attention recently. No doubt each of these methods will have a distinct advantage with particular substrates.

The asymmetric oxidation of furyl styryl ketone $\mathbf{1}$ to afford epoxide 2 (Scheme 1) is particularly well-served by the biphasic

1 (ii)

Scheme 1 Reagents and conditions: i. urea-hydrogen peroxide (UHP), poly-L-leucine (PLL), diazabicycloundecene (DBU), tetrahydrofuran (THF), room temp., $20^{\circ} \mathrm{C}$, up to 2 h . For further details see Table 1 ; ii. $\mathrm{I}_{2}(0.5-1.0 \mathrm{~mol} \%)$, acetonitrile-water $(1: 1), 40^{\circ} \mathrm{C}, 60 \mathrm{~h}$; iii. Me_{2} $\mathrm{CH}(\mathrm{OMe})_{2}$, toluene- p-sulfonic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 5 h .
polyleucine methodology ${ }^{4}$ since the rapid rate of the transformation allows the catalyst loading to be reduced to ca. 2.5 $\mathrm{mol} \%$ (Table 1). Note that the catalyst is readily recovered and may be reused at least six times, without a damaging change to the rapid rate or the exquisite stereoselectivity of the reaction. ${ }^{5}$
In this paper we show that the epoxide 2 serves as a useful precursor to some of the naturally-occurring styryl lactones 7-10 (Fig. 1), isolated from Goniothalamus giganteus Hook, ${ }^{6}$ which possess significant cytotoxic activity towards human tumour cells.

Results

Thus the oxirane ring in compound 2 was hydrolysed by the method of Iranpoor ${ }^{7}$ to furnish the erythro-diol $\mathbf{3}$ and threodiol $\mathbf{4}$ in roughly equal quantities. Treatment of the diol mixture

Table 1 Asymmetric epoxidation of enone 1 using poly-L-leucine as catalyst ${ }^{a}$

Entry	DBU (equiv.)	Enone $\mathbf{1 / g}$	Reaction time/min	Yield (\%) (ee of 2)
1	1.2	0.99	20	$>95(>99)$
2^{b}	1.2	1.49	40	$>95(>99)$
3^{b}	0.3	1.49	90	$>95(97.5)$
4^{b}	0.15	2.97	120	$>95(96.1)$
5^{b}	0.3	3.96	120	$>95(95.1)$
6^{b}	0.3	3.96	120	$>95(96.4)$

${ }^{a}$ Reaction of enone 1 with urea-hydrogen peroxide ($1-2$ equiv.) in tetrahydrofuran (20 ml) containing DBU with poly-L-leucine (1 g). ${ }^{b}$ Recycled poly-L-leucine.

(+)-Goniofufurone

(+)-8-Acetylgoniotriol

Fig. 1
with 2,2-dimethoxypropane and acid afforded the acetonides 5 and $\mathbf{6}$ which were readily separated by chromatography over silica in 46% and 38% yield (respectively) from the epoxide 2. With multigram quantities of the protected diols available, syntheses of the naturally-occurring styryllactones were undertaken.
Reduction of the ketone $\mathbf{6}$ with zinc borohydride in ether at $0^{\circ} \mathrm{C}$ gave a mixture of the alcohols $\mathbf{1 1}$ and $\mathbf{1 2}$ (ratio $5.5: 1$) in quantitative yield. Similarly methanolic borohydride reduced 6 to afford alcohols $\mathbf{1 1}$ and $\mathbf{1 2}$ in the ratio 8:1, again in high yield. The stereoselectivity of the reduction was altered to a small but useful extent by using Luche's reagent which afforded the alcohol $11(60 \%)$ and the more useful alcohol $12(38 \%)$. The former compound could be recycled by oxidation to the ketone $\mathbf{6}$ using manganese dioxide (93%) (Scheme 2).

Treatment of the alcohol 12 with N-bromosuccinimide (NBS) in aqueous tetrahydrofuran as described by Geogiadis ${ }^{8}$ and used by others ${ }^{9 a}$ afforded the lactol $\mathbf{1 3}$ in near quantitative yield. One-pot treatment of the lactol $\mathbf{1 3}$ with chromium trioxide in acetic acid, then sodium borohydride in propan-2-ol-acetic acid gave the lactone $1^{9 a, 10}$ which, when exposed to aqueous acetic acid, produced $(+)$-goniotriol $\left\{[a]_{\mathrm{D}}^{20}+121\right.$ (c 0.8 , $\mathrm{MeOH})$; lit. $\left.{ }^{11 j}[a]_{\mathrm{D}}+121(\mathrm{MeOH})\right\}(78 \%$ overall yield from compound 13). Isomerization of goniotriol 7 using DBU in THF gave (+)-goniofufurone $\left\{[a]_{\mathrm{D}}^{20}+8.9\right.$ ($c 2.0$, EtOH); lit., ${ }^{11 j}$ $\left.[a]_{\mathrm{D}}+8.9(c 0.4, \mathrm{EtOH})\right\}$. Isomerization of the acetonide $\mathbf{1 4}$

Scheme 2 Reagents and conditions: i. $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$; ii. $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 3$ days; iii. NBS, THF- $\mathrm{H}_{2} \mathrm{O}(8: 2), 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iv. DBU (cat), THF, room temp., 2 days (67%); v. Acetone, $p-\mathrm{TsOH}$ (cat), room temp., 4 days.
using acidic acetone gave the alcohol $\mathbf{1 5}\left\{[\alpha]_{\mathrm{D}}^{20}+44.7\right.$ (c 1.0, $\mathrm{MeOH})$; lit., $\left.{ }^{11 j}[a]_{\mathrm{D}}+45(c 0.3, \mathrm{MeOH})\right\}$, an established precursor to (+)-8-acetylgoniotriol 9 . ${ }^{11 j}$

Reduction of the ketone 5 using sodium borohydride in methanol at $0^{\circ} \mathrm{C}$ gave the diastereoisomeric alcohols 16 and 17 in the ratio 1:2.6 (Scheme 3). However employment of L-Selectride ${ }^{\circledR}$ as the reducing agent reversed the stereoselectivity of the reaction, affording the required diastereomer $\mathbf{1 6}$ as the major product (ratio $c a .2: 1$). Treatment of this mixture of compounds $\mathbf{1 6}$ and $\mathbf{1 7}$ with NBS in aqueous acetone gave the desired lactol 18 (61%) which was separated from the epimer 19 (30\%) by chromatography.

Oxidation of the lactol 18 using chromium(VI) oxide gave the ketolactone $20\left(88 \%\right.$ yield) with an optical rotation $\left\{[a]_{D}^{20}+3.8\right.$ (c 3.0, EtOH) $\}$ which did not correspond to the documented literature value. ${ }^{12 d}$ However subsequent conversion of the ketolactone 20 into 8 -epi-goniotriol $21\left\{[a]_{\mathrm{D}}+104.9\right.$ (c 0.8 $\mathrm{EtOH})$; lit., $\left.{ }^{11 j}[a]_{\mathrm{D}}+88(c 0.8, \mathrm{EtOH})\right\}$ and into (+)-goniopypyrone $10\left\{[a]_{\mathrm{D}}^{20}+55\right.$ (c 1.2, EtOH); lit., ${ }^{11 j}[a]_{\mathrm{D}}+54$ (c 0.5, $\mathrm{EtOH})\}$ confirmed our stereochemical assignments.

Discussion

The above route to goniotriol and related compounds complements previously described methods of synthesis using starting materials from the chiral pool, ${ }^{9,11,13-17}$ and those employing Sharpless asymmetric epoxidation ${ }^{10}$ and hydroxylation ${ }^{12}$ in the key step. Asymmetric aldol reactions have also been featured. ${ }^{18}$ The employment of a furan moiety to provide the lactone fragment is also precedented but in these other routes the furan unit is introduced at a late stage in the synthesis. Our route is unique in that the furan unit is already present at the very start of the preparative route.

Scheme 3 Reagents and conditions: i. L-Selectride ${ }^{\circledR}$, THF, $-78^{\circ} \mathrm{C}$, quantitative; ii. NBS, THF- $\mathrm{H}_{2} \mathrm{O}(8: 2), 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii. $\mathrm{CrO}_{3}, \mathrm{AcOH}$, room temp., 10 min ; then NaBH_{4} (4.0 equiv.), $\mathrm{AcOH}-\mathrm{HOPr}-\mathrm{i}(1: 1)$, $-20^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}, 1.5(88 \%)$; iv. $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(4: 1), 65^{\circ} \mathrm{C}, 4.5 \mathrm{~h}(90 \%)$; v. DBU (cat), THF, room temp., 24 h (76%).

Experimental

(2R,3R)-2,3-Dihydroxy-1-(2-furyl)-3-phenylpropan-1-one 3 and (2R,3S)-2,3-dihydroxy-1-(2-furyl)-3-phenylpropan-1-one 4

A brown solution of epoxy ketone $2(6.43 \mathrm{~g}, 30 \mathrm{mmol})$ and iodine ($571 \mathrm{mg}, 2.25 \mathrm{mmol}$) in acetonitrile-water (1:1) (180 mL) was stirred for 60 h at $40^{\circ} \mathrm{C}$. Most of acetonitrile was removed under reduced pressure. Dichloromethane (50 mL) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ were added and the mixture was shaken. The organic layer was separated; the aqueous layer was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash chromatography (eluent: EtOAcpetroleum ether $=1: 2$) to give a pale yellow oil $(6.41 \mathrm{~g}, 92 \%)$ as an inseparable mixture of erythro-isomer 3 and threo-isomer 4. The ratio of erythro-isomer 3 and threo-isomer 4 was determined by ${ }^{1} \mathrm{H}$ NMR to be $1: 1.3$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right)$ of erythro-isomer 3: $5.14(1 \mathrm{H}, \mathrm{d}, J=4.2), 5.18(1 \mathrm{H}, \mathrm{d}, J=4.2)$, $6.54(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 1.8$), 7.15(1 \mathrm{H}, \mathrm{d}, J=3.6), 7.23-7.45$ $(5 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{d}, J=1.8) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right)$ of threo-isomer 4: $4.99(1 \mathrm{H}, \mathrm{d}, J=3.0), 5.10(1 \mathrm{H}, \mathrm{d}, J=3.0), 6.55$ ($1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 1.8), $7.18(1 \mathrm{H}, \mathrm{d}, J=3.6), 7.23-7.45$ (5 H , m), $7.59(1 \mathrm{H}, \mathrm{d}, J=1.8)$; MS (EI): $232\left(\mathrm{M}^{+}, 0.04 \%\right), 126$ (58.76%), 106 (46.33%), 105 (58.19%), 95 (100%) (HRMS: Calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{NH}_{4}^{+}: 250.10793$. Found: 250.10820).
(4R,5R)-2,2-Dimethyl-4-(2-furoyl)-5-phenyl-1,3-dioxolane 6 and (4R,5S)-2,2-dimethyl-4-(2-furoy)-5-phenyl-1,3-dioxolane 5

The mixture of α, β-dihydroxy ketones $\mathbf{3}$ and $\mathbf{4}(\mathbf{3}: \mathbf{4}=1: 1.3)$ $(6.039 \mathrm{~g}, 26 \mathrm{mmol})$ was dissolved in dichloromethane (60 mL). 2,2-Dimethoxypropane ($10.832 \mathrm{~g}, 104 \mathrm{mmol}$) and toluene-psulfonic acid (40 mg) were added. The reaction solution was stirred for 5 h at room temperature, then washed with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash chromatography (eluent: EtOAc-petroleum ether $=1: 8)$. The first fraction gave threo-acetal $5(3.561 \mathrm{~g}$,
$50.3 \%)$ as pale yellow prisms. $\mathrm{Mp} 65-66^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}=-80.2(c$ c 1.3 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (Nujol): $v_{\text {max }} / \mathrm{cm}^{-1} 1677 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.56$ $(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 4.82(1 \mathrm{H}, \mathrm{d}, J=7.5), 5.34(1 \mathrm{H}, \mathrm{d}, J=7.5)$, $6.48(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 1.8$)$, $7.22(1 \mathrm{H}, \mathrm{d}, J=3.6), 7.31-7.43$ $(5 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{d}, J=1.8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 26.16,27.01$, 80.16, 84.36, 111.55, 112.28, 120.64, 126.69, 128.45, 128.63, 137.99, 147.56, 151.18, 184.86; MS (EI): 257 (0.38%), 215 (7.31\%), 214 (34.15%), 197 (1.83%), 177 (7.39%), 1.66 (7.66%), $151(7.57 \%), 119(29.58 \%), 105$ (36.62\%), 95 (100%) (HRMS: Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}+\mathrm{H}^{+}$: 273.11268. Found: 273.11257). Chiral HPLC analysis showed the ee is over 98% (AD column, $254 \mathrm{~nm}, 10 \%$ EtOH in hexane, $2 R, 3 S$-isomer: $t_{\mathrm{R}} 9.47 \mathrm{~min}$; $2 S, 3 R$-isomer: $t_{\mathrm{R}} 6.36 \mathrm{~min}$). The second fraction afforded erythro-acetal 6 ($2.891 \mathrm{~g}, 40.8 \%$) as colourless needles. Mp $83-$ $84{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}=-17.6\left(c 1.6, \mathrm{CH}_{2} \mathrm{Cl}\right)$); IR (Nujol): $v_{\max } / \mathrm{cm}^{-1} 1682$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.57(3 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{s}), 5.59(2 \mathrm{H}, \mathrm{s}), 6.31$ ($1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 1.5), $6.90(1 \mathrm{H}, \mathrm{d}, J=3.6), 7.09-7.21(5 \mathrm{H}$, $\mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{d}, J=1.5) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 24.90, 26.48, $80.41,81.45,110.80,112.27,117.57,127.05,127.97,128.30$, 135.78, 145.84, 151.68, 184.84; MS (EI): 215 (5.32\%), 214 (17.52\%), 177 (9.70%), 166 (15.19%), 151 (7.48%), 120 (4.99%), 119 (30.84\%), 95 (100%) (HRMS: Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}+\mathrm{H}^{+}$: 273.11268. Found: 273.11257). Chiral HPLC analysis showed the ee is over 98% (AD column, $254 \mathrm{~nm}, 10 \% \mathrm{EtOH}$ in hexane, $2 R, 3 R$-isomer: $t_{\mathrm{R}} 22.07 \mathrm{~min} ; 2 S, 3 S$-isomer: $t_{\mathrm{R}} 10.15 \mathrm{~min}$).

References

1 B. Lygo and P. G. Wainwright, Tetrahedron Lett., 1998, 39, 1599.
2 S. Arai, H. Tsuge and T. Shioiri, Tetrahedron Lett., 1998, 39, 7563; K. Daikai, M. Kamaura and J. Inanaga, Tetrahedron Lett., 1998, 39, 7321; S. Watanabe, Y. Kobayashi, T. Arai, H. Sasai, M. Bougauchi and M. Shibasaki, Tetrahedron Lett., 1998, 39, 7353.

3 For a recent review see J. V. Allen, S. M. Roberts and N. M. Williamson, Adv. Biochem. Eng. Biotechnol., 1998, 63, 125; for earlier reviews see L. Pu, Tetrahedron: Asymmetry, 1998, 9, 1457; S. Ebrahim and M. Wills, Tetrahedron: Asymmetry, 1997, 8, 3163.

4 B. M. Adger, J. V. Barkley, S. Bergeron, M. W. Cappi, B. E. Flowerdew, M. P. Jackson, R. McCague, T. C. Nugent and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1997, 3501.

5 Cf. J. V. Allen, S. Bergeron, M. J. Griffiths, S. Mukherjee, S. M. Roberts, N. M. Williamson and L. E. Wu, J. Chem. Soc., Perkin Trans. 1, 1998, 3171.
6 (a) X. P. Fang, J. E. Anderson, C. J. Chang, J. L. McLaughlin and P. E. Fanwick, J. Nat. Prod., 1991, 54, 1034; (b) X. P. Fang, J. E. Anderson, C. J. Chang and J. L. McLaughlin, Tetrahedron, 1991, 47, 9751; (c) A. Alkofahi, W. W. Ma, T. G. McKenzie, S. R. Byrn and J. L. McLaughlin, J. Nat. Prod, 1989, 52, 1371; (d) A. A. E. El-Zayat, N. R. Ferrighi, T. G. McKenzie, S. R. Byrn, J. M. Cassady, C. J. Chang and J. L. McLaughlin, Tetrahedron Lett., 1985, 26, 955; (e) X. P. Fang, J. E. Anderson, J. F. Kozlowski, C. J. Chang and J. L. McLaughlin, Tetrahedron, 1993, 49, 1563; (f) Y. C. Wu, F. R. Chang, C. Y. Duh, S. K. Wang and T. S. Wu, Phytochemistry, 1992, 31, 2851; (g) Y. C. Wu, C. Y. Duh, F. R. Chang, G. Y. Chang, S. K. Wang, J. J. Chang, D. R. McPhail, A. T. McPhail and K. H. Lee, J. Nat. Prod., 1991, 54, 1077; (h) F. B. Ahmad, S. O. Omar and A. M. Sharif, Phytochemistry, 1991, 30, 2430; (i) S. M. Colegate, L. B. Din, A. Latiff, K. M. Salleh, M. W. Samsudin, B. W. Skelton, K. Tadano, A. H. White and Z. Zakaria, Phytochemistry, 1990, 29, 1701; (j) T. W. Sam, S. Y. Chew, S. Matsjeh, E. K. Gan, D. Razak and A. L. Mohamed. Tetrahedron Lett., 1987, 28, 2541; (k) X. P. Fang, J. E. Anderson, C. J. Chang, P. E. Fanwick and J. L. McLaughlin, J. Chem. Soc., Perkin Trans. 1, 1990, 1655; (l) A. Bermejo, M. A. Blazquez, A. Serrano, M. C. Zafra-Polo and D. Cortes, J. Nat. Prod., 1997, 60, 1338

7 N. Iranpoor, B. Tamami and K. Niknam, Can. J. Chem., 1997, 75, 1913.

8 M. P. Georgiadis and E. A. Couladouros, J. Org. Chem., 1986, 51, 2725.

9 From D- or L-glyceraldehyde acetonide: (a) M. Tsubuki, K. Kanai and T. Honda, J. Chem. Soc., Chem. Commun., 1992, 1640; (b) M. Tsubuki, K. Kanai and T. Honda, Synlett, 1993, 653; (c) M. Tsubuki, K. Kanai and T. Honda, Heterocycles, 1993, 35, 281; (d) S. H. Kang and W. J. Kim, Tetrahedron Lett., 1989, 30, 5915.

10 (a) Z. C. Yang and W. S. Zhou, Tetrahedron, 1995, 51, 1429; (b) Z. C. Yang and W. S. Zhou, J. Chem. Soc., Chem. Commun., 1995, 743.

11 From D-glycero-D-glucoheptono- γ-lactone: (a) J. G. Guilhouley and T. K. M. Shing, J. Chem. Soc., Chem. Commun., 1988, 976; (b) T. K. M. Shing and M. J. Aloui, J. Chem. Soc., Chem. Commun., 1988, 1526; (c) T. K. M. Shing and M. J. Aloui, Can. J. Chem., 1990, 68, 1035; (d) T. K. M. Shing, H. C. Tsui and Z. H. Zhou, J. Chem. Soc., Chem. Commun., 1992, 810; (e) T. K. M. Shing, V. W. F. Tai and H. C. Tsui, J. Chem. Soc., Chem. Commun., 1994, 1293; (f) T. K. M. Shing, H. C. Tsui and Z. H. Zhou, Tetrahedron Lett., 1993, 34, 691; (g) T. K. M. Shing and H. C. Tsui, J. Chem. Soc., Chem. Commun., 1992, 432; (h) T. K. M. Shing, H. C. Tsui and Z. H. Zhou, Tetrahedron, 1992, 48, 8659; (i) T. K. M. Shing, Z. H. Zhou and T. C. Mak, J. Chem. Soc., Perkin Trans. 1, 1992, 1907; (j) T. K. M. Shing, H. C. Tsui and Z. H. Zhou, J. Org. Chem., 1995, 60, 3121
12 (a) D. Xu, K. B. Sharpless, Tetrahedron Lett., 1994, 35, 4685; (b) S. Y. Ko and J. Lerpiniere, Tetrahedron Lett., 1995, 36, 2101; (c) W. S. Zhou and Z. C. Yang, Tetrahedron Lett., 1993, 34, 7075; (d) W. S. Zhou and Z. C. Yang, J. Chem. Soc., Perkin Trans. 1, 1994, 3231; (e) W. S. Zhou and Z. C. Yang, Chin. J. Chem., 1996, 14, 152; (f) D. J. Dixon, S. V. Ley and E. W. Tate, J. Chem. Soc., Perkin Trans. 1, 1998, 3127.
13 From L-arabinose: (a) K. Tadano, Y. Uneno and S. Ogawa, Chem. Lett., 1988, 111; (b) K. Tadano, Y. Uneno, S. Ogawa and J. L. McLaughlin, Bull. Chem. Soc. Jpn., 1989, 49, 1563.
14 From D-glucose: (a) T. Gracza and V. Jager, Synlett, 1992, 191; (b) T. Gracza and V. Jager, Synthesis, 1994, 1359; (c) P. J. Murphy, J. Chem. Soc., Chem. Commun., 1992, 1096; (d) K. P. C. Prakash and S. P. Rao, Synlett, 1993, 123; (e) K. P. C. Prakash and S. P. Rao, Tetrahedron, 1993, 49, 1505; (f) J. P. Gesson, J. C. Jacquesy and M. Mondon, Tetrahedron Lett., 1987, 28, 3945; (g) J. P. Gesson, J. C. Jacquesy and M. Mondon, Tetrahedron Lett., 1987, 28, 3949; (h) J. P. Gesson, J. C. Jacquesy and M. Mondon, Tetrahedron, 1989, 45, 2627.
15 From l-tartaric acid: (a) P. Somfai, Tetrahedron, 1994, 50, 11315; (b) S. Saito, T. Harunari, N. Shimamura, M. Asahara and T. Morikawa, Synlett, 1992, 325.
16 From D-glucurono-6,3-lactone: (a) J. Ye, R. K. Bhatt and J. R. Flack, Tetrahedron Lett., 1993, 34, 8007; (b) X. H. Yi, Y. Meng and C. J. Li, Chem. Commun., 1998, 449; (c) X. H. Yi, Y. Meng, X. G. Hua and C. J. Li, J. Org. Chem., 1998, 63, 7472; (h) J. P. Surivet and J. M. Vatèle, Tetrahedron Lett., 1998, 399681.

17 From (S) - or (R)-mandelic acid: (a) J. P. Surivet, J. Goré and J. M. Vatèle, Tetrahedron Lett., 1996, 37, 371; (b) J. P. Surivet and J. M. Vatèle, Tetrahedron Lett., 1996, 37, 4373; (c) J. P. Surivet, J. Goré and J. M. Vatèle, Tetrahedron, 1996, 52, 14877; (d) J. P. Surivet, J. N. Volle and J. M. Vatèle, Tetrahedron: Asymmetry, 1996, 7, 3305; (e) J. P. Surivet and J. M. Vatèle, Tetrahedron Lett., 1997, 38, 819; (f) J. P. Surivet and J. M. Vatèle, Tetrahedron Lett., 1998, 39, 7299; (g) M. Kotora and E. Negishi, Tetrahedron Lett., 1996, 37, 9041; (h) J. P. Surivet and J. M. Vatèle, Tetrahedron Lett., 1998, 39, 9681.

18 By asymmetric aldol reaction: (a) C. Mukai, I. J. Kim and M. Hanaoka, Tetrahedron Lett., 1993, 34, 6081; (b) C. Mukai, S. Hirai, I. J. Kim, M. Kido and M. Hanaoka, Tetrahedron, 1996, 52, 6547; (c) C. Mukai, S. Hirai and M. Hanaoka, J. Org. Chem., 1997, 62, 6619.

Communication 8/08436J

